Tuesday, October 3, 2017

DOE has "virtually no role at all" in Lyophilization

We've been working away for a little while now with a group of customers to develop improved models for Lyophilization.  The fruits of these labours are available as the current Lyo model in DynoChem Resources.  This handles multi-component (e.g. water, acetic acid) freezing (rate-based approach to SLE) and sublimation (rate-based approach to SVE), with pressure-dependent heat transfer, radiation and a sublimation rate that depends on the thickness of the dry product layer.  You can obtain a predictive model for your system using this template and a few key experiments.

In researching the field while putting this model together, among Mike Pikal's excellent writings we found this useful presentation from a meeting in Bologna, 2012 [The Scientific Basis of QbD: Developing a Scientifically Sound Formulation and Optimizing the Lyophilization Process] and our favourite slide from the deck is reproduced below.


We are used to delivering this message in the context of characterizing, optimizing and scaling other unit operations (e.g. reactions, crystallization) and it is no surprise to see that the same principles hold for Lyo.

Download the model to simulate Lyophilization, fit parameters, predict scale-up and optimize. Download the full slide deck for a good introduction to Lyo.

No comments:

ShareThis small